Comparative effects of bone morphogenetic proteins and sox9 overexpression on extracellular matrix metabolism of bovine nucleus pulposus cells.
نویسندگان
چکیده
STUDY DESIGN An in vitro biologic study of the effects of adenovirus expressing bone morphogenetic proteins (BMPs) and adenovirus expressing Sox9 on extracellular matrix metabolism by bovine nucleus pulposus cells. OBJECTIVE To compare the effects of recombinant adenoviral vectors expressing various BMPs (2, 3, 4, 5, 7, 8, 10, 11, 12, 13, 14, and 15) and Sox9 on extracellular matrix accumulation by bovine nucleus pulposus cells. SUMMARY OF BACKGROUND DATA Nucleus pulposus matrix production may be promoted by transducing the cells with genes that permit the sustained expression of growth factors. The choice of the particular factors or BMPs to be studied for these applications has been largely based on the commercial availability of such products. To our knowledge, this study is the first effort to evaluate systematically the relative effectiveness of the various members of the BMP family in promoting intervertebral disc matrix repair. METHODS Adult bovine nucleus pulposus cells cultured in monolayer were transduced with adenoviruses expressing human BMP-2, 3, 4, 5, 7, 8, 10, 11, 12, 13, 14, and 15, and adenovirus expressing Sox9. Proteoglycan and collagen accumulation, and cell proliferation were measured 6 days after viral transduction. As a positive control, cells were cultured without any exogenous gene in the presence of recombinant human (rh)BMP-7. RESULTS Nucleus pulposus cells transduced with adenoviruses expressing BMP-2, 3, 4, 5, 7, 8, 10, 13, 15, and Sox9 accumulated more proteoglycans than nucleus pulposus cells transduced with adenovirus expressing green fluorescent protein (control). It is noteworthy that nucleus pulposus cells transduced with adenoviruses expressing BMP-2 and 7 resulted in essentially as great a stimulation of proteoglycan accumulation as nucleus pulposus cells maintained in the presence of rhBMP-7 (adenoviruses expressing BMP-2: 104% increase; adenoviruses expressing BMP-7: 162% increase; and rhBMP-7: 120% increase). Nucleus pulposus cells transduced with BMP-2, 4, 5, 7, 8, 10, 14, 15, and Sox9 accumulated significantly more collagen compared to nucleus pulposus cells transduced with adenovirus expressing green fluorescent protein; adenoviruses expressing BMP-4 and 14 were the most effective (552% and 661% increase, respectively). Nucleus pulposus cells also proliferated, as measured by deoxyribonucleic acid content, when transduced with adenoviruses expressing BMP-2 and 8. CONCLUSIONS To our knowledge, for the first time, we have shown the relative effectiveness of 12 different BMPs and Sox9 in stimulating proteoglycan and collagen production by nucleus pulposus cells. Adenoviruses expressing BMP-2 and 7 were the most effective in stimulating proteoglycan accumulation, while adenoviruses expressing BMP-4 and 14 were the most effective in stimulating collagen accumulation. To our knowledge, this study is the first to compare the relative effectiveness of various BMPs and Sox9 on extracellular matrix accumulation by nucleus pulposus cells, and could help to develop more efficacious approaches to the treatment of degenerating intervertebral discs.
منابع مشابه
MicroRNA-494 promotes apoptosis and extracellular matrix degradation in degenerative human nucleus pulposus cells
PURPOSE This study investigated the expression and function of the microRNA-494 in intervertebral disc degeneration (IDD). RESULTS MicroRNA-494 expression was upregulated during IDD progression; its overexpression increased the expression of ECM catabolic factors such as matrix metalloproteinase and A disintegrin and metalloproteinase with thrombospondin motif in NP cells while decreasing tha...
متن کاملLow Intensity Pulsed Ultrasound Promotes the Extracellular Matrix Synthesis of Degenerative Human Nucleus Pulposus Cells Through FAK/PI3K/Akt Pathway.
STUDY DESIGN In vitro experimental study. OBJECTIVE To investigate the effect of low-intensity pulsed ultrasound (LIPUS) on the extracellular matrix (ECM) synthesis of degenerative human nucleus pulposus cells and explore the molecular mechanism. SUMMARY OF BACKGROUND DATA LIPUS has been used successfully for bone fracture healing and been proved to be effective in stimulating ECM metabolis...
متن کاملTransduced bovine articular chondrocytes affect the metabolism of cocultured nucleus pulposus cells in vitro: implications for chondrocyte transplantation into the intervertebral disc.
STUDY DESIGN Biologic study on the effects of coculture of bovine articular chondrocytes transduced ex vivo with genes expressing bone morphogenetic proteins (BMPs) on nucleus pulposus (NP) cells. OBJECTIVE To evaluate the effects of bovine articular chondrocytes transduced with adenoviruses expressing various BMPs on proteoglycan and collagen production, and cellular proliferation of NP cell...
متن کاملSox9 Gene Transfer Enhanced Regenerative Effect of Bone Marrow Mesenchymal Stem Cells on the Degenerated Intervertebral Disc in a Rabbit Model
OBJECTIVE The effect of Sox9 on the differentiation of bone marrow mesenchymal stem cells (BMSCs) to nucleus pulposus (NP)-like (chondrocyte-like) cells in vitro has been demonstrated. The objective of this study is to investigate the efficacy and feasibility of Sox9-transduced BMSCs to repair the degenerated intervertebral disc in a rabbit model. MATERIALS AND METHODS Fifty skeletally mature...
متن کاملBMP3 Alone and Together with TGF-β Promote the Differentiation of Human Mesenchymal Stem Cells into a Nucleus Pulposus-Like Phenotype
Human mesenchymal stem cells (MSCs) have the potential to differentiate into nucleus pulposus (NP)-like cells under specific stimulatory conditions. Thus far, the effects of bone morphogenetic protein 3 (BMP3) and the cocktail effects of BMP3 and transforming growth factor (TGF)-β on MSC proliferation and differentiation remain obscure. Therefore, this study was designed to clarify these unknow...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Spine
دوره 31 19 شماره
صفحات -
تاریخ انتشار 2006